3.288 \(\int \frac{x^{7/2}}{a+b x^2} \, dx\)

Optimal. Leaf size=215 \[ -\frac{a^{5/4} \log \left (-\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{x}+\sqrt{a}+\sqrt{b} x\right )}{2 \sqrt{2} b^{9/4}}+\frac{a^{5/4} \log \left (\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{x}+\sqrt{a}+\sqrt{b} x\right )}{2 \sqrt{2} b^{9/4}}-\frac{a^{5/4} \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{b} \sqrt{x}}{\sqrt [4]{a}}\right )}{\sqrt{2} b^{9/4}}+\frac{a^{5/4} \tan ^{-1}\left (\frac{\sqrt{2} \sqrt [4]{b} \sqrt{x}}{\sqrt [4]{a}}+1\right )}{\sqrt{2} b^{9/4}}-\frac{2 a \sqrt{x}}{b^2}+\frac{2 x^{5/2}}{5 b} \]

[Out]

(-2*a*Sqrt[x])/b^2 + (2*x^(5/2))/(5*b) - (a^(5/4)*ArcTan[1 - (Sqrt[2]*b^(1/4)*Sqrt[x])/a^(1/4)])/(Sqrt[2]*b^(9
/4)) + (a^(5/4)*ArcTan[1 + (Sqrt[2]*b^(1/4)*Sqrt[x])/a^(1/4)])/(Sqrt[2]*b^(9/4)) - (a^(5/4)*Log[Sqrt[a] - Sqrt
[2]*a^(1/4)*b^(1/4)*Sqrt[x] + Sqrt[b]*x])/(2*Sqrt[2]*b^(9/4)) + (a^(5/4)*Log[Sqrt[a] + Sqrt[2]*a^(1/4)*b^(1/4)
*Sqrt[x] + Sqrt[b]*x])/(2*Sqrt[2]*b^(9/4))

________________________________________________________________________________________

Rubi [A]  time = 0.198196, antiderivative size = 215, normalized size of antiderivative = 1., number of steps used = 12, number of rules used = 8, integrand size = 15, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.533, Rules used = {321, 329, 211, 1165, 628, 1162, 617, 204} \[ -\frac{a^{5/4} \log \left (-\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{x}+\sqrt{a}+\sqrt{b} x\right )}{2 \sqrt{2} b^{9/4}}+\frac{a^{5/4} \log \left (\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{x}+\sqrt{a}+\sqrt{b} x\right )}{2 \sqrt{2} b^{9/4}}-\frac{a^{5/4} \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{b} \sqrt{x}}{\sqrt [4]{a}}\right )}{\sqrt{2} b^{9/4}}+\frac{a^{5/4} \tan ^{-1}\left (\frac{\sqrt{2} \sqrt [4]{b} \sqrt{x}}{\sqrt [4]{a}}+1\right )}{\sqrt{2} b^{9/4}}-\frac{2 a \sqrt{x}}{b^2}+\frac{2 x^{5/2}}{5 b} \]

Antiderivative was successfully verified.

[In]

Int[x^(7/2)/(a + b*x^2),x]

[Out]

(-2*a*Sqrt[x])/b^2 + (2*x^(5/2))/(5*b) - (a^(5/4)*ArcTan[1 - (Sqrt[2]*b^(1/4)*Sqrt[x])/a^(1/4)])/(Sqrt[2]*b^(9
/4)) + (a^(5/4)*ArcTan[1 + (Sqrt[2]*b^(1/4)*Sqrt[x])/a^(1/4)])/(Sqrt[2]*b^(9/4)) - (a^(5/4)*Log[Sqrt[a] - Sqrt
[2]*a^(1/4)*b^(1/4)*Sqrt[x] + Sqrt[b]*x])/(2*Sqrt[2]*b^(9/4)) + (a^(5/4)*Log[Sqrt[a] + Sqrt[2]*a^(1/4)*b^(1/4)
*Sqrt[x] + Sqrt[b]*x])/(2*Sqrt[2]*b^(9/4))

Rule 321

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c^(n - 1)*(c*x)^(m - n + 1)*(a + b*x^n
)^(p + 1))/(b*(m + n*p + 1)), x] - Dist[(a*c^n*(m - n + 1))/(b*(m + n*p + 1)), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
 c, n, m, p, x]

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 211

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]}, Di
st[1/(2*r), Int[(r - s*x^2)/(a + b*x^4), x], x] + Dist[1/(2*r), Int[(r + s*x^2)/(a + b*x^4), x], x]] /; FreeQ[
{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ, b
]]))

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{x^{7/2}}{a+b x^2} \, dx &=\frac{2 x^{5/2}}{5 b}-\frac{a \int \frac{x^{3/2}}{a+b x^2} \, dx}{b}\\ &=-\frac{2 a \sqrt{x}}{b^2}+\frac{2 x^{5/2}}{5 b}+\frac{a^2 \int \frac{1}{\sqrt{x} \left (a+b x^2\right )} \, dx}{b^2}\\ &=-\frac{2 a \sqrt{x}}{b^2}+\frac{2 x^{5/2}}{5 b}+\frac{\left (2 a^2\right ) \operatorname{Subst}\left (\int \frac{1}{a+b x^4} \, dx,x,\sqrt{x}\right )}{b^2}\\ &=-\frac{2 a \sqrt{x}}{b^2}+\frac{2 x^{5/2}}{5 b}+\frac{a^{3/2} \operatorname{Subst}\left (\int \frac{\sqrt{a}-\sqrt{b} x^2}{a+b x^4} \, dx,x,\sqrt{x}\right )}{b^2}+\frac{a^{3/2} \operatorname{Subst}\left (\int \frac{\sqrt{a}+\sqrt{b} x^2}{a+b x^4} \, dx,x,\sqrt{x}\right )}{b^2}\\ &=-\frac{2 a \sqrt{x}}{b^2}+\frac{2 x^{5/2}}{5 b}+\frac{a^{3/2} \operatorname{Subst}\left (\int \frac{1}{\frac{\sqrt{a}}{\sqrt{b}}-\frac{\sqrt{2} \sqrt [4]{a} x}{\sqrt [4]{b}}+x^2} \, dx,x,\sqrt{x}\right )}{2 b^{5/2}}+\frac{a^{3/2} \operatorname{Subst}\left (\int \frac{1}{\frac{\sqrt{a}}{\sqrt{b}}+\frac{\sqrt{2} \sqrt [4]{a} x}{\sqrt [4]{b}}+x^2} \, dx,x,\sqrt{x}\right )}{2 b^{5/2}}-\frac{a^{5/4} \operatorname{Subst}\left (\int \frac{\frac{\sqrt{2} \sqrt [4]{a}}{\sqrt [4]{b}}+2 x}{-\frac{\sqrt{a}}{\sqrt{b}}-\frac{\sqrt{2} \sqrt [4]{a} x}{\sqrt [4]{b}}-x^2} \, dx,x,\sqrt{x}\right )}{2 \sqrt{2} b^{9/4}}-\frac{a^{5/4} \operatorname{Subst}\left (\int \frac{\frac{\sqrt{2} \sqrt [4]{a}}{\sqrt [4]{b}}-2 x}{-\frac{\sqrt{a}}{\sqrt{b}}+\frac{\sqrt{2} \sqrt [4]{a} x}{\sqrt [4]{b}}-x^2} \, dx,x,\sqrt{x}\right )}{2 \sqrt{2} b^{9/4}}\\ &=-\frac{2 a \sqrt{x}}{b^2}+\frac{2 x^{5/2}}{5 b}-\frac{a^{5/4} \log \left (\sqrt{a}-\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{x}+\sqrt{b} x\right )}{2 \sqrt{2} b^{9/4}}+\frac{a^{5/4} \log \left (\sqrt{a}+\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{x}+\sqrt{b} x\right )}{2 \sqrt{2} b^{9/4}}+\frac{a^{5/4} \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1-\frac{\sqrt{2} \sqrt [4]{b} \sqrt{x}}{\sqrt [4]{a}}\right )}{\sqrt{2} b^{9/4}}-\frac{a^{5/4} \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1+\frac{\sqrt{2} \sqrt [4]{b} \sqrt{x}}{\sqrt [4]{a}}\right )}{\sqrt{2} b^{9/4}}\\ &=-\frac{2 a \sqrt{x}}{b^2}+\frac{2 x^{5/2}}{5 b}-\frac{a^{5/4} \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{b} \sqrt{x}}{\sqrt [4]{a}}\right )}{\sqrt{2} b^{9/4}}+\frac{a^{5/4} \tan ^{-1}\left (1+\frac{\sqrt{2} \sqrt [4]{b} \sqrt{x}}{\sqrt [4]{a}}\right )}{\sqrt{2} b^{9/4}}-\frac{a^{5/4} \log \left (\sqrt{a}-\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{x}+\sqrt{b} x\right )}{2 \sqrt{2} b^{9/4}}+\frac{a^{5/4} \log \left (\sqrt{a}+\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{x}+\sqrt{b} x\right )}{2 \sqrt{2} b^{9/4}}\\ \end{align*}

Mathematica [A]  time = 0.0650102, size = 203, normalized size = 0.94 \[ \frac{-5 \sqrt{2} a^{5/4} \log \left (-\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{x}+\sqrt{a}+\sqrt{b} x\right )+5 \sqrt{2} a^{5/4} \log \left (\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{x}+\sqrt{a}+\sqrt{b} x\right )-10 \sqrt{2} a^{5/4} \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{b} \sqrt{x}}{\sqrt [4]{a}}\right )+10 \sqrt{2} a^{5/4} \tan ^{-1}\left (\frac{\sqrt{2} \sqrt [4]{b} \sqrt{x}}{\sqrt [4]{a}}+1\right )-40 a \sqrt [4]{b} \sqrt{x}+8 b^{5/4} x^{5/2}}{20 b^{9/4}} \]

Antiderivative was successfully verified.

[In]

Integrate[x^(7/2)/(a + b*x^2),x]

[Out]

(-40*a*b^(1/4)*Sqrt[x] + 8*b^(5/4)*x^(5/2) - 10*Sqrt[2]*a^(5/4)*ArcTan[1 - (Sqrt[2]*b^(1/4)*Sqrt[x])/a^(1/4)]
+ 10*Sqrt[2]*a^(5/4)*ArcTan[1 + (Sqrt[2]*b^(1/4)*Sqrt[x])/a^(1/4)] - 5*Sqrt[2]*a^(5/4)*Log[Sqrt[a] - Sqrt[2]*a
^(1/4)*b^(1/4)*Sqrt[x] + Sqrt[b]*x] + 5*Sqrt[2]*a^(5/4)*Log[Sqrt[a] + Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[x] + Sqrt[b
]*x])/(20*b^(9/4))

________________________________________________________________________________________

Maple [A]  time = 0.012, size = 152, normalized size = 0.7 \begin{align*}{\frac{2}{5\,b}{x}^{{\frac{5}{2}}}}-2\,{\frac{a\sqrt{x}}{{b}^{2}}}+{\frac{a\sqrt{2}}{4\,{b}^{2}}\sqrt [4]{{\frac{a}{b}}}\ln \left ({ \left ( x+\sqrt [4]{{\frac{a}{b}}}\sqrt{x}\sqrt{2}+\sqrt{{\frac{a}{b}}} \right ) \left ( x-\sqrt [4]{{\frac{a}{b}}}\sqrt{x}\sqrt{2}+\sqrt{{\frac{a}{b}}} \right ) ^{-1}} \right ) }+{\frac{a\sqrt{2}}{2\,{b}^{2}}\sqrt [4]{{\frac{a}{b}}}\arctan \left ({\sqrt{2}\sqrt{x}{\frac{1}{\sqrt [4]{{\frac{a}{b}}}}}}+1 \right ) }+{\frac{a\sqrt{2}}{2\,{b}^{2}}\sqrt [4]{{\frac{a}{b}}}\arctan \left ({\sqrt{2}\sqrt{x}{\frac{1}{\sqrt [4]{{\frac{a}{b}}}}}}-1 \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^(7/2)/(b*x^2+a),x)

[Out]

2/5*x^(5/2)/b-2*a*x^(1/2)/b^2+1/4*a/b^2*(1/b*a)^(1/4)*2^(1/2)*ln((x+(1/b*a)^(1/4)*x^(1/2)*2^(1/2)+(1/b*a)^(1/2
))/(x-(1/b*a)^(1/4)*x^(1/2)*2^(1/2)+(1/b*a)^(1/2)))+1/2*a/b^2*(1/b*a)^(1/4)*2^(1/2)*arctan(2^(1/2)/(1/b*a)^(1/
4)*x^(1/2)+1)+1/2*a/b^2*(1/b*a)^(1/4)*2^(1/2)*arctan(2^(1/2)/(1/b*a)^(1/4)*x^(1/2)-1)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(7/2)/(b*x^2+a),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.3777, size = 393, normalized size = 1.83 \begin{align*} \frac{20 \, b^{2} \left (-\frac{a^{5}}{b^{9}}\right )^{\frac{1}{4}} \arctan \left (-\frac{a b^{7} \sqrt{x} \left (-\frac{a^{5}}{b^{9}}\right )^{\frac{3}{4}} - \sqrt{b^{4} \sqrt{-\frac{a^{5}}{b^{9}}} + a^{2} x} b^{7} \left (-\frac{a^{5}}{b^{9}}\right )^{\frac{3}{4}}}{a^{5}}\right ) + 5 \, b^{2} \left (-\frac{a^{5}}{b^{9}}\right )^{\frac{1}{4}} \log \left (b^{2} \left (-\frac{a^{5}}{b^{9}}\right )^{\frac{1}{4}} + a \sqrt{x}\right ) - 5 \, b^{2} \left (-\frac{a^{5}}{b^{9}}\right )^{\frac{1}{4}} \log \left (-b^{2} \left (-\frac{a^{5}}{b^{9}}\right )^{\frac{1}{4}} + a \sqrt{x}\right ) + 4 \,{\left (b x^{2} - 5 \, a\right )} \sqrt{x}}{10 \, b^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(7/2)/(b*x^2+a),x, algorithm="fricas")

[Out]

1/10*(20*b^2*(-a^5/b^9)^(1/4)*arctan(-(a*b^7*sqrt(x)*(-a^5/b^9)^(3/4) - sqrt(b^4*sqrt(-a^5/b^9) + a^2*x)*b^7*(
-a^5/b^9)^(3/4))/a^5) + 5*b^2*(-a^5/b^9)^(1/4)*log(b^2*(-a^5/b^9)^(1/4) + a*sqrt(x)) - 5*b^2*(-a^5/b^9)^(1/4)*
log(-b^2*(-a^5/b^9)^(1/4) + a*sqrt(x)) + 4*(b*x^2 - 5*a)*sqrt(x))/b^2

________________________________________________________________________________________

Sympy [A]  time = 166.208, size = 192, normalized size = 0.89 \begin{align*} \begin{cases} \tilde{\infty } x^{\frac{5}{2}} & \text{for}\: a = 0 \wedge b = 0 \\\frac{2 x^{\frac{9}{2}}}{9 a} & \text{for}\: b = 0 \\\frac{2 x^{\frac{5}{2}}}{5 b} & \text{for}\: a = 0 \\- \frac{\sqrt [4]{-1} a^{\frac{5}{4}} b^{17} \left (\frac{1}{b}\right )^{\frac{77}{4}} \log{\left (- \sqrt [4]{-1} \sqrt [4]{a} \sqrt [4]{\frac{1}{b}} + \sqrt{x} \right )}}{2} + \frac{\sqrt [4]{-1} a^{\frac{5}{4}} b^{17} \left (\frac{1}{b}\right )^{\frac{77}{4}} \log{\left (\sqrt [4]{-1} \sqrt [4]{a} \sqrt [4]{\frac{1}{b}} + \sqrt{x} \right )}}{2} - \sqrt [4]{-1} a^{\frac{5}{4}} b^{17} \left (\frac{1}{b}\right )^{\frac{77}{4}} \operatorname{atan}{\left (\frac{\left (-1\right )^{\frac{3}{4}} \sqrt{x}}{\sqrt [4]{a} \sqrt [4]{\frac{1}{b}}} \right )} - \frac{2 a \sqrt{x}}{b^{2}} + \frac{2 x^{\frac{5}{2}}}{5 b} & \text{otherwise} \end{cases} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**(7/2)/(b*x**2+a),x)

[Out]

Piecewise((zoo*x**(5/2), Eq(a, 0) & Eq(b, 0)), (2*x**(9/2)/(9*a), Eq(b, 0)), (2*x**(5/2)/(5*b), Eq(a, 0)), (-(
-1)**(1/4)*a**(5/4)*b**17*(1/b)**(77/4)*log(-(-1)**(1/4)*a**(1/4)*(1/b)**(1/4) + sqrt(x))/2 + (-1)**(1/4)*a**(
5/4)*b**17*(1/b)**(77/4)*log((-1)**(1/4)*a**(1/4)*(1/b)**(1/4) + sqrt(x))/2 - (-1)**(1/4)*a**(5/4)*b**17*(1/b)
**(77/4)*atan((-1)**(3/4)*sqrt(x)/(a**(1/4)*(1/b)**(1/4))) - 2*a*sqrt(x)/b**2 + 2*x**(5/2)/(5*b), True))

________________________________________________________________________________________

Giac [A]  time = 1.73939, size = 265, normalized size = 1.23 \begin{align*} \frac{\sqrt{2} \left (a b^{3}\right )^{\frac{1}{4}} a \arctan \left (\frac{\sqrt{2}{\left (\sqrt{2} \left (\frac{a}{b}\right )^{\frac{1}{4}} + 2 \, \sqrt{x}\right )}}{2 \, \left (\frac{a}{b}\right )^{\frac{1}{4}}}\right )}{2 \, b^{3}} + \frac{\sqrt{2} \left (a b^{3}\right )^{\frac{1}{4}} a \arctan \left (-\frac{\sqrt{2}{\left (\sqrt{2} \left (\frac{a}{b}\right )^{\frac{1}{4}} - 2 \, \sqrt{x}\right )}}{2 \, \left (\frac{a}{b}\right )^{\frac{1}{4}}}\right )}{2 \, b^{3}} + \frac{\sqrt{2} \left (a b^{3}\right )^{\frac{1}{4}} a \log \left (\sqrt{2} \sqrt{x} \left (\frac{a}{b}\right )^{\frac{1}{4}} + x + \sqrt{\frac{a}{b}}\right )}{4 \, b^{3}} - \frac{\sqrt{2} \left (a b^{3}\right )^{\frac{1}{4}} a \log \left (-\sqrt{2} \sqrt{x} \left (\frac{a}{b}\right )^{\frac{1}{4}} + x + \sqrt{\frac{a}{b}}\right )}{4 \, b^{3}} + \frac{2 \,{\left (b^{4} x^{\frac{5}{2}} - 5 \, a b^{3} \sqrt{x}\right )}}{5 \, b^{5}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(7/2)/(b*x^2+a),x, algorithm="giac")

[Out]

1/2*sqrt(2)*(a*b^3)^(1/4)*a*arctan(1/2*sqrt(2)*(sqrt(2)*(a/b)^(1/4) + 2*sqrt(x))/(a/b)^(1/4))/b^3 + 1/2*sqrt(2
)*(a*b^3)^(1/4)*a*arctan(-1/2*sqrt(2)*(sqrt(2)*(a/b)^(1/4) - 2*sqrt(x))/(a/b)^(1/4))/b^3 + 1/4*sqrt(2)*(a*b^3)
^(1/4)*a*log(sqrt(2)*sqrt(x)*(a/b)^(1/4) + x + sqrt(a/b))/b^3 - 1/4*sqrt(2)*(a*b^3)^(1/4)*a*log(-sqrt(2)*sqrt(
x)*(a/b)^(1/4) + x + sqrt(a/b))/b^3 + 2/5*(b^4*x^(5/2) - 5*a*b^3*sqrt(x))/b^5